
pypey
Release 3.0.2

Jose Llarena

Jan 16, 2022

CONTENTS

1 Motivation 3
1.1 Lazy and Deferred Evaluation . 4
1.2 Argument Unpacking . 5

2 Getting Started 7

3 Related Libraries 9

4 Contents 11
4.1 API Reference . 11
4.2 License . 36

5 Indices and tables 37

Python Module Index 39

Index 41

i

ii

pypey, Release 3.0.2

Pypey is a library for concisely composing data transformation primitives. It support lazily evaluated collection
pipelines with standard operations like map, reduce , filter and several others others. It is fashioned after libraries
like Java Streams , Immutable.js and C++ Streams. It has been inspired by, and leans on, the excellent itertools and
more-itertools

CONTENTS 1

https://martinfowler.com/articles/collection-pipeline
https://martinfowler.com/articles/collection-pipeline
https://en.wikipedia.org/wiki/Map_(higher-order_function)
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Filter_(higher-order_function)
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://immutable-js.github.io/immutable-js/docs/#/Seq
http://jscheiny.github.io/Streams
https://docs.python.org/3/library/itertools.html
https://github.com/more-itertools/more-itertools

pypey, Release 3.0.2

2 CONTENTS

CHAPTER

ONE

MOTIVATION

Many operations on data, like reading lines from a file, filtering or aggregating items, appear repeatedly across many
domains and so they benefit from encapsulating to avoid duplication and enable code reuse. This encapsulation also
has a second benefit: the abstracted operations now map 1-to-1 to the high-level description, ie, the intent of the coder.
A third advantage is that it allows the different operations in a pipeline to be disentangled from each other.

Let’s illustrate all this with an example: a frequent data processing routine where you need to build a word-to-id
dictionary from a file containing words of text. The high-level recipe would be something like this:

1. read lines from file
2. split lines into words
3. keep only unique words across all lines
4. assign a unique number id to each word
5. put words and their ids in a dictionary

A typical implementation using only python built-ins would look like this:

with open('text.txt') as file: # 1. open file for reading
idx = 0 # 2. make id counter
word_to_id = {} # 3. make empty dict

for line in file: # 4. loop through lines
for word in line.split(): # 5. split line and loop through words

word = word.rstrip() # 6. strip line terminator
if word not in word_to_id: # 7. check to see if it's in dictionary

word_to_id[word] = idx # 8. insert word with a new id if it's not
idx += 1 # 9. update id counter

Notice how there are steps 2. , 3. , 6. and 9. do not correspond to anything in the high level recipe. Notice also,
how operations 4. to 9. interleave with each other, happening once per loop iteration. Let’s see how this could be
implemented with itertools:

from itertools import chain, count

with open('text.txt') as file: # 1. open file for reading

lines = file.readlines() # 2. read lines from file
stripped = map(str.rstrip, lines) # 3. strip line terminator
words = map(str.split, stripped) # 4. split lines into words
all_words = chain.from_iterable(words) # 5. concatenate all lines
unique = set(all_words) # 6. keep only unique words across all lines
words_ids = zip(unique, count()) # 7. assign a unique id to each word
word_to_id = dict(words_ids) # 8. put in dictionary

3

pypey, Release 3.0.2

Now the steps match the original intent better because they operate at higher level, ie, they work at the level of whole
collections of items, and do not concern themselves with the data and syntactic structures needed when the algorithm
is specified at the level of the individual items, as in the first implementation. The next implementation is more concise
and leverages the ability to pipe the collections together:

from itertools import chain, count

with open('text.txt') as file: # 1.
2. + 3. + 4. + 5. + 6. + 7. + 8.
word_to_id = dict(zip(set(chain.from_iterable(map(str.split, map(str.rstrip, file.

→˓readlines())))), count()))

However, the sequence of steps is now laid out in reverse order or “inside-out”. With Pypey, the code is still concise
and the steps always flow right:

from pypey import pype

word_to_id = (pype.file('text.txt') # 1. read lines from file, strip line terminator by␣
→˓default

.map(str.split) # 2. split lines into words

.flat() # 3. concatenate all lines (by "flattening" them)

.uniq() # 4. keep only unique words across all lines

.enum(swap=True) # 5. assign a unique id to each word

.to(dict)) # 6. put in a dictionary

This implementation matches the original intent best and removes the need for the coder to write boiler-plate that is not
domain-specific. A more terse implementation helps when using the Python interpreter’s interactive mode (REPL):

>>> from pypey import pype
>>> # 1. + 2. + 3. + 4. + 5. + 6.
>>> word_to_id = pype.file('text.txt').map(str.split).flat().uniq().enum(swap=True).
→˓to(dict)

1.1 Lazy and Deferred Evaluation

Both itertools-‘s and Pypey’s implementation would incur a performance penalty if each step created an intermediate
collection. However by piping through lazy collections, ie, those that are evaluated incrementally only one item at a
time as they are iterated through (based on generators), the performance is similar to a loop-based implementation.
Furthermore, just as the loop-based approach, items are only read one at a time into memory, avoiding unnecessary
allocation.

Not all operations can be implemented lazily, for instance, sorting is necessarily “eager” as it entails traversing the
whole collection before being able to retrieve the first sorted item. Pypey still makes these eager operations deferred to
allow delaying the consumption of the lazy collection until it’s actually needed:

>>> p = pype(['a', 'fun', 'day']).sort()
>>> p
<pypey.pype.Pype object at 0x7f58edaf4970>
>>> list(p)
['a', 'day', 'fun']

4 Chapter 1. Motivation

pypey, Release 3.0.2

1.2 Argument Unpacking

PEP 3113 removed Python 2’s ability to unpack function arguments from Python 3. This made using higher-order
functions (functions taking or returning other functions) harder when applied to iterable items in a collection, especially
so when lambdas are passed in, as it’s impossible to use unpacking assignments in them. Pypey brings back a limited
form of argument unpacking that works only at the top level of nesting. For instance:

>>> pype.dict({'a':1, 'fun':2, 'day':3}).map(lambda kv: (kv[0], kv[1] + 1)).to(list)
[('a', 2), ('fun', 3), ('day', 4)]

can also be written more clearly as:

>>> pype.dict({'a':1, 'fun':2, 'day':3}).map(lambda k, v: (k, v + 1)).to(list)
[('a', 2), ('fun', 3), ('day', 4)]

1.2. Argument Unpacking 5

https://www.python.org/dev/peps/pep-3113

pypey, Release 3.0.2

6 Chapter 1. Motivation

CHAPTER

TWO

GETTING STARTED

To get started, install the library with pip:

pip install pypey

Then use as:

>>> from pypey import pype
>>> pype(range(-2, 3)).map(abs).print()
2
1
0
1
2
<pypey.pype.Pype object at 0x7f56401e0f40>

To run tests install pytest:

pip install pytest

then run:

pytest

7

pypey, Release 3.0.2

8 Chapter 2. Getting Started

CHAPTER

THREE

RELATED LIBRARIES

Pypey is similar to itertools and more-itertools but takes an object-based approach instead, with method-chaining as
the main pipe-building mechanism, instead of function composition. This allows pipes to always flow right (or down,
if properly formatted) which is arguably a more intuitive ordering for coders used to Object Orientated Programming.

Pypey is perhaps most similar to python_lazy_streams as it too uses an object-based+method-chaining approach. Re-
lated is pipes, which implements function-chaining with operator overloading and decorators, allowing it to compose
right like Pypey. stream.py also uses operator overloading and function chaining.

There’s a number of libraries with extensive pipeline APIs, such as ReactiveX-‘s function-chaining RxPy , but geared
towards real-time event streams. Nvidia’s Streamz is in the same space, but is object-based with method-chaining,
and adds support for Pandas and cuDF. Apache Beam combines batch- and stream-processing and supports different
backends like Spark, and uses function-chaining with operator overloading. Tensorflow’s Dataset class is an method-
chaining API focussed on loading tensors.

Riko is also an object-based+method-chaining type of API but specialises in structured text processing.

Mario is a CLI-based function-chaining API, similar to Unix Shell’s pipes.

9

https://docs.python.org/3/library/itertools.html
https://github.com/more-itertools/more-itertools
https://github.com/brettschneider/python_lazy_streams
https://github.com/robinhilliard/pipes
https://github.com/aht/stream.py/blob/master/example/randwalk.py
http://reactivex.io
https://rxpy.readthedocs.io/en/latest/get_started.html
https://streamz.readthedocs.io/en/latest
https://github.com/pandas-dev/pandas
https://docs.rapids.ai/api/cudf/stable
https://github.com/apache/beam/blob/master/sdks/python/apache_beam/examples/wordcount_minimal.py
http://spark.apache.org
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://github.com/nerevu/riko/blob/master/docs/FAQ.rst#what-pipes-are-available
https://github.com/python-mario/mario

pypey, Release 3.0.2

10 Chapter 3. Related Libraries

CHAPTER

FOUR

CONTENTS

4.1 API Reference

Pype’s methods can be grouped according to whether they are lazy or eager vs whether they are deferred or immediate:

Deferred Immedi-
ate

Lazy accum() broadcast() cat() chunk() clone() cycle() dist() do() drop()
drop_while() enum() flat() flatmap() it() interleave() map() partition()
pick() print() reject() select() slice() split() take() take_while() tee()
to_file() uniq() window() zip() zip_with()

do()
map()
print()
to_file()

Ea-
ger

divide() freqs() group_by() reverse() roundrobin() sample() shuffle()
sorted() take() to_json() top() unzip()

eager()
reduce()
size()

Lazy methods would normally be deferred and eager methods immediate. However, if an eager method returns a pipe,
Pypey defers its execution until it’s iterated through, at which point, the backing Iterable will be consumed, if lazy.

do(), map(), print() and to_file() are intrinsically lazy but they can be eager in certain circumstances. The
three side-effectful methods do(), print() and to_file() can be made eager by setting their now parameter to
True (to_file()’s and print()’s are True by default) as they are often the last operations in a pipeline, when
consumption of its backing Iterable is warranted. do() and map() consume their iterables when they are made
parallel, if their workers parameter is set to a value larger than 0.

take() is lazy when it’s parameter is positive (head) and eager when it’s negative (tail).

In order to stop a lazy backing Iterable from being consumed, clone() can be used to ensure that the consumption
happens on the returned pipe and not the original one. clone() manages this by using iteratools.tee under the
hood and it’s the only method that mutates the internal state of a Pype

If reading the whole pipe into memory is not an issue, it’s often simpler and more efficient to create a pipe with an
eager backing Iterable (list, tuple and so on). For instance if reading from a file:

>>> from pypey import pype
>>> eager_pype = pype.file('text.txt').to(list, Pype)

or more conveniently:

>>> from pypey import pype
>>> eager_pype = pype.file('text.txt').eager()

11

pypey, Release 3.0.2

Pype’s methods can also be categorised according to what kind of pipe they return: mappings return a pipe of the same
size as the one they are applied to; partitions return divisions of the original pipe; and selections return a subset of the
pipe’s items:

Map-
pings

accum() clone() enum() map() pick() reverse() shuffle() sort() zip_with()

Parti-
tions

chunk() dist() divide() group_by() partition() split() unzip() window() zip()

Selec-
tions

drop() drop_while() reject() sample() select() slice() take() take_while() top()
uniq()

If given an initial value, accum() will return a pipe with one more item than the original pipe’s.

Some methods are just specialisations, or convenient versions of others:

General Specific
__iter__() it()
do() print() to_file()
map() pick() zip_with()
sample() shuffle()
select() reject()
slice() drop() take()
zip() enum()
window() chunk()

Modules

4.1.1 pypes

Factory for creating pipes from different sources.

class Pyper
Bases: object

Factory for creating new pipes. Use pype instance.

>>> from pypey import pype
>>> list(pype([1,2,3]))
[1, 2, 3]

static dict(dictionary: Mapping[pypey.func.K, pypey.func.V])→ pypey.pype.Pype[Tuple[pypey.func.K,
pypey.func.V]]

Returns a pipe where each item is a key-value pair in the given Mapping.

>>> from pypey import pype
list(pype.dict({'fun':1, 'day':2}))
[('fun', 1), ('day', 2)]

Parameters dictionary – the dictionary to pipe

Returns a pipe containing the dictionary’s items

Raises TypeError if dictionary is not a Mapping

12 Chapter 4. Contents

pypey, Release 3.0.2

static file(src: Union[AnyStr, os.PathLike, int], *, mode: str = 'r', buffering: int = - 1, encoding:
Optional[str] = 'utf8', errors: Optional[str] = None, newline: Optional[str] = None, closefd:
bool = True, opener: Optional[Callable[[...], int]] = None, strip: bool = True)→
pypey.pype.Pype[str]

Reads lines from given file into a pipe.

>>> from pypey import pype
>>> from os.path import join, dirname
>>> list(pype.file(join(dirname(__file__), 'unittests', 'test_file.txt')))
['line 1', 'line 2', 'line 3']

Parameters

• src – path to the file or file descriptor, as per built-in open file argument

• mode – mode as per built-in open, except no write modes are allowed

• buffering – buffering as per built-in open

• encoding – encoding as per built-in open except the default value is utf8 instead of None

• errors – errors as per built-in open

• newline – newline as per built-in open

• closefd – closefd as per built-in open

• opener – opener as per built-in open

• strip – True if end of line should be removed from each line, False otherwise

Returns a pipe where each item is a line in the given file

Raises ValueError if mode has w (write) or + (append) in it

static json(src: Union[AnyStr, os.PathLike, int], *, mode: str = 'r', cls: Optional[Type] = None,
object_hook: Optional[Callable] = None, parse_float: Optional[Callable] = None, parse_int:
Optional[Callable] = None, parse_constant: Optional[Callable] = None, object_pairs_hook:
Optional[Callable] = None)→ pypey.pype.Pype[Union[Tuple[str, Any], None, bool, float, int,
str]]

Reads content in given json into a pipe.

>>> from pypey import pype
>>> from os.path import join, dirname
>>> dict(pype.json(join(dirname(__file__), 'unittests', 'object.json')))
{'a': 1.0, 'fun': 2.0, 'day': 3.0}

Parameters

• src – path to the file or file descriptor, as per built-in open file argument

• mode – mode as per built-in open, except no write modes are allowed

• cls – custom JSONDecoder class, as per json.load

• object_hook – object_hook Callable, as per json.load

• parse_float – parse_float Callable, as per json.load

• parse_int – parse_int Callable, as per json.load

• parse_constant – parse_constance Callable, as per json.load

4.1. API Reference 13

pypey, Release 3.0.2

• object_pairs_hook – object_pairs_hook Callable, as per json.load

Returns pype with single item if json contains a single value, several items if json contains a list
and pairs of items if json contains object

pype: pypey.pypes.Pyper = <pypey.pypes.Pyper object>
Pype factory

4.1.2 pype

Main class for building streaming pipelines

class Pype(it: Iterable[pypey.func.T])
Bases: Generic[pypey.func.T]

accum(fn: Callable[[pypey.func.X, pypey.func.T], pypey.func.X], init: Optional[pypey.func.X] = None)→
pypey.pype.Pype[pypey.func.X]

Returns a pipe where each item is the result of combining a running total with the corresponding item in
the original pipe:

>>> from pypey import pype
>>> list(pype([1, 2, 3]).accum(lambda total, n: total+n))
[1, 3, 6]

When an initial value is given, the resulting pipe will have one more item than the original one:

>>> from pypey import pype
>>> list(pype([1, 2, 3]).accum(lambda total, n: total+n, init=0))
[0, 1, 3, 6]

Similar to itertools.accumulate.

Parameters

• init – optional initial value to start the accumulation with

• fn – function where the first argument is the running total and the second the current item

Returns a pipe with accumulated items

Raises TypeError if fn is not a Callable

broadcast(fn: Callable[[pypey.func.T], Iterable[pypey.func.X]])→ pypey.pype.Pype[Tuple[pypey.func.T,
pypey.func.X]]

Returns the flattened Cartesian product of this pipe’s items and the items returned by fn. Conceptually
similar to numpy-‘s broadcasting.

>>> from pypey import pype
>>> list(pype(['a', 'fun', 'day']).broadcast(tuple).map(lambda word, char: f'
→˓{word} -> {char}'))
['a -> a', 'fun -> f', 'fun -> u', 'fun -> n', 'day -> d', 'day -> a', 'day -> y
→˓']

Parameters fn – function to create Iterable from each of this pipe’s items

Returns a pipe where each item is a pair with the first element being the nth instance of this
pipe’s items and the second an element of fn-s returned Iterable

Raises TypeError if fn is not a Callable

14 Chapter 4. Contents

pypey, Release 3.0.2

cat(other: Iterable[pypey.func.X])→ pypey.pype.Pype[Union[pypey.func.T, pypey.func.X]]
Concatenates this pipe with the given Iterable.

>>> list(pype([1, 2, 3]).cat([4, 5, 6]))
[1, 2, 3, 4, 5, 6]

Parameters other – Iterable to append to this one

Returns a concatenated pipe

Raises TypeError if other is not an Iterable

chunk(size: Union[int, Iterable[Optional[int]]])→ pypey.pype.Pype[pypey.pype.Pype[pypey.func.T]]
Breaks pipe into sub-pipes with up to size items each:

>>> from pypey import pype
>>> [list(chunk) for chunk in pype([1, 2, 3, 4]).chunk(2)]
[[1, 2], [3, 4]]

If this pipe’s size is not a multiple of size, the last chunk will have fewer items than size:

>>> from pypey import pype
>>> [list(chunk) for chunk in pype([1, 2, 3]).chunk(2)]
[[1, 2], [3]]

If size is larger than this pipe’s size, only one chunk will be returned:

>>> from pypey import pype
>>> [list(chunk) for chunk in pype([1, 2, 3, 4]).chunk(5)]
[[1, 2, 3, 4]]

If size is an iterable of ints, chunks will have corresponding sizes:

>>> [list(chunk) for chunk in pype([1, 2, 3, 4]).chunk([1, 3])]
[[1], [2, 3, 4]]

If the sum of sizes is smaller than this pipe’s length, the remaining items will not be returned:

>>> from pypey import pype
>>> list(chunk) for chunk in pype([1, 2, 3, 4]).chunk([1, 2])]
[[1], [2, 3]]

If the sum of sizes is larger than this pipe’s length, fewer items will be returned in the chunk that overruns
the pipe and further chunks will be empty:

>>> from pypey import pype
>>> [list(chunk) for chunk in pype([1, 2, 3, 4]).chunk([1, 2, 3, 4])]
[[1], [2, 3], [4], []]

The last size can be None, in wich case, the last chunk’s will be remaining items after the one-but-last size.

>>> from pypey import pype
>>> [list(chunk) for chunk in pype([1, 2, 3, 4]).chunk([1, None])]
[[1], [2, 3, 4]]

4.1. API Reference 15

pypey, Release 3.0.2

This method tees the backing Iterable.

Similar to more_itertools.ichunked and more_itertools.split_into.

Parameters size – chunk size or sizes

Returns a pipe of pipes with up to size items each or with sizes specified by iterable of sizes

Raises TypeError if size is not an int or an Iterable of int-s

Raises ValueError if size is not positive or if any of the iterable of sizes is not positive

clone()→ pypey.pype.Pype[pypey.func.T]
Lazily clones this pipe. This method tees the backing Iterable and replaces it with a new copy.

>>> from pypey import pype
>>> list(pype([1, 2, 3]).clone())
[1, 2, 3]

Similar to itertools.tee.

Returns a copy of this pipe

cycle(n: Optional[int] = None)→ pypey.pype.Pype[pypey.func.T]
Returns items in pipe n times if n is not None:

>>> from pypey import pype
>>> list(pype([1, 2, 3]).cycle(2))
[1, 2, 3, 1, 2, 3]

else it returns infinite copies:

>>> from pypey import pype
>>> list(pype([1, 2, 3]).cycle().take(6))
[1, 2, 3, 1, 2, 3]

Similar to itertools.cycle with n = None and to more_itertools.ncycles with integer n.

Parameters n – number of concatenated copies or None for infinite copies

Returns a pipe that cycles either n or infinite times over the items of this one

Raises TypeError if n is neither an int nor None

Raises ValueError if n is not negative

dist(n: int)→ pypey.pype.Pype[pypey.pype.Pype[pypey.func.T]]
Returns a pipe with n items, each being smaller pipes containing this pipe’s elements distributed equally
amongst them:

>>> from pypey import pype
>>> [list(segment) for segment in pype([1, 2, 3, 4, 5, 6]).dist(2)]
[[1, 3, 5], [2, 4, 6]]

If this pipe’s size is not evenly divisible by n, then the size of the returned Iterable items will not be
identical:

>>> from pypey import pype
>>> [list(segment) for segment in pype([1, 2, 3, 4, 5]).dist(2)]
[[1, 3, 5], [2, 4]]

16 Chapter 4. Contents

pypey, Release 3.0.2

If this pipe’s size is smaller than n, the last pipes in the returned pipe will be empty:

>>> from pypey import pype
>>> [list(segment) for segment in pype([1, 2, 3, 4, 5]).dist(7)]
[[1], [2], [3], [4], [5], [], []]

This method tees the backing Iterable.

Similar to more_itertools.distribute.

Parameters n – the number of pipes with distributed elements

Returns a pipe with this pipe’s items distributed amongst the contained pipes

Raises TypeError if n is not an int

Raises ValueError if n is not positive

divide(n: int)→ pypey.pype.Pype[pypey.pype.Pype[pypey.func.T]]
Breaks pipe into n sub-pipes:

>>> from pypey import pype
>>> [list(div) for div in pype([1, 2, 3, 4, 5, 6]).divide(2)]
[[1, 2, 3], [4, 5, 6]]

If this pipe’s size is not a multiple of n, the sub-pipes’ sizes will be equal except the last one, which will
contain all excess items:

>>> from pypey import pype
>>> [list(div) for div in pype([1, 2, 3, 4, 5, 6, 7]).divide(3)]
[[1, 2], [3, 4], [5, 6, 7]]

If this pipe’s size is smaller than n, the resulting pipe will contain as many single-item pipes as there are in
it, followed by n minus this pipe’s size empty pipes.

>>> from pypey import pype
>>> [list(div) for div in pype([1, 2, 3]).divide(4)]
[[1], [2], [3], []]

This method requires calculating the size of this pipe, and thus will eagerly consume the backing Iterable
if it’s lazy.

Similar to more_itertools.divide.

Parameters n – number of segments

Returns a pipe of n pipes

Raises TypeError if n is not an int

Raises ValueError if n is not positive

do(fn: Callable[[pypey.func.T], Any], *, now: bool = False, workers: int = 0, chunk_size: int = 100)→
pypey.pype.Pype[pypey.func.T]

Produces a side effect for each item, with the given function’s return value ignored. It is typically used to
execute an operation that is not functionally pure such as printing to console, updating a GUI, writing to
disk or sending data over a network.

>>> from pypey import pype
>>> p = pype(iter([1, 2, 3])).do(lambda n: print(f'{n}'))

(continues on next page)

4.1. API Reference 17

pypey, Release 3.0.2

(continued from previous page)

>>> list(p)
1
2
3
[1, 2, 3]

If now is set to True the side effect will take place immediately and the backing Iterablewill be consumed
if lazy.

>>> from pypey import pype
>>> p = pype(iter([1, 2, 3])).do(lambda n: print(f'{n}'), now=True)
1
2
3
>>> list(p)
[]

If workers is greater than 0 the side effect will be parallelised using multiprocessing if possible, or
pathos if not. pathos multiprocessing implementation is slower and limited vs the built-in multiprocess-
ing but it does allow using lambdas and local functions. When using workers, the backing Iterable is
teed to avoid consumption. Using a large chunk_size can greately speed up parallelisation; it is ignored
if workers is 0.

Also known as for_each, tap and sink.

Similar to more_itertools.side_effect.

Parameters

• fn – a function taking a possibly unpacked item

• now – False to defer the side effect until iteration, True to write immediately

• workers – number of extra processes to parallelise this method’s side effect function

• chunk_size – size of subsequence of Iterable to be processed by workers

Returns this pipe

Raises TypeError if fn is not a Callable or workers or chunk_size are not int

Raises ValueError if workers is negative or chunk_size is non-positive

drop(n: int)→ pypey.pype.Pype[pypey.func.T]
Returns this pipe but with the first or last n items missing:

>>> from pypey import pype
>>> list(pype([1, 2, 3, 4]).drop(2))
[3, 4]

>>> from pypey import pype
>>> list(pype([1, 2, 3, 4]).drop(-2))
[1, 2]

Parameters n – number of items to skip, positive if at the beginning of the pipe, negative at the
end

Returns pipe with n dropped items

18 Chapter 4. Contents

pypey, Release 3.0.2

Raises TypeError if n is not an int

drop_while(pred: Callable[[...], bool])→ pypey.pype.Pype[pypey.func.T]
Drops items as long as the given predicate is True; afterwards, it returns every item:

>>> from pypey import pype
>>> list(pype([1, 2, 3, 4]).drop_while(lambda n: n < 3))
[3, 4]

Similar to itertools.dropwhile.

Parameters pred – A function taking a possibly unpacked item and returning a boolean

Returns a pipe that is a subset of this one

Raises TypeError if pred is not a Callable

eager()→ pypey.pype.Pype[pypey.func.T]
Returns a pype with the same contents as this one but with an eager backing collection. This will trigger
reading the whole backing Iterable into memory.

>>> from pypey import pype
>>> p = pype(range(-5, 5)).map(abs)
>>> p.size()
10
>>> p.size()
0
>>> p = pype(range(-5, 5)).map(abs).eager()
>>> p.size()
10
>>> p.size()
10

Returns this pipe, but eager

enum(start: int = 0, *, swap: bool = False)→ pypey.pype.Pype[Union[Tuple[int, pypey.func.T],
Tuple[pypey.func.T, int]]]

Pairs each item with an increasing integer index:

>>> from pypey import pype
>>> list(pype(['a', 'fun', 'day']).enum())
[(0, 'a'), (1, 'fun'), (2, 'day')]

swap = True will swap the index and item around:

>>> from pypey import pype
>>> list(pype(['a', 'fun', 'day']).enum(swap=True))
[('a', 0), ('fun', 1), ('day', 2)]

Similar to built-in enumerate.

Parameters

• start – start of the index sequence

• swap – if True index will be returned second, else it will be returned first

4.1. API Reference 19

pypey, Release 3.0.2

Returns a pipe the same size as this one but with each item being tuple of index and original
item

Raises TypeError if start is not an int

flat()→ pypey.pype.Pype[pypey.func.T]
Flattens iterable items into a collection of their elements:

>>> from pypey import pype
>>> list(pype(['a', 'fun', 'day']).flat())
['a', 'f', 'u', 'n', 'd', 'a', 'y']

Similar to itertools.chain.from_iterable

Returns a pipe with the elements of its Iterable items as items

Raises TypeError if items are not Iterable

flatmap(fn: Callable[[...], pypey.func.I])→ pypey.pype.Pype[pypey.func.X]
Maps Iterable items and then flattens the result into their elements.

Equivalent to Pype.map() followed by Pype.flat()

Parameters fn – function taking a possibly unpacked item and returning a value

Returns a pipe with mapped flattened items

Raises TypeError if items are not Iterable or fn is not a Callable

freqs(total: bool = True)→ pypey.pype.Pype[Tuple[Union[pypey.func.T, object], int, float]]
Computes this pipe’s items’ absolute and relative frequencies and optionally the total:

>>> from pypey import pype
>>> tuple(pype('AAB').freqs())
(('A', 2, 0.6666666666666666), ('B', 1, 0.3333333333333333), (_TOTAL_, 3, 1.0))

If total is False, the total is left out:

>>> from pypey import pype
>>> tuple(pype('AAB').freqs(total=False))
(('A', 2, 0.6666666666666666), ('B', 1, 0.3333333333333333))

Returns a pype containing tuples with this pipe’s uniques items, plus the total as the pype.TOTAL
item, with their absolute and relative frequencies

group_by(key: Callable[[...], pypey.func.Y])→ pypey.pype.Pype[Tuple[pypey.func.Y, List[pypey.func.T]]]
Groups items according to the key returned by the key function:

>>> from pypey import pype
>>> list(pype(['a', 'fun', 'day']).group_by(len))
[(1, ['a']), (3, ['fun', 'day'])]

This method is eager and will consume the backing Iterable if it’s lazy.

Similar to itertools.groupby except elements don’t need to be sorted

Parameters key – function taking a possibly unpacked item and returning a grouping key

Returns a pipe made up of pairs of keys and lists of items

Raises TypeError if fn is not a Callable

20 Chapter 4. Contents

pypey, Release 3.0.2

interleave(other: Iterable[pypey.func.X], n: int = 1, trunc: bool = True)→
pypey.pype.Pype[Union[pypey.func.T, pypey.func.X, Any]]

Returns a pipe where items in this pipe are interleaved with items in the given Iterable, in order. If either
this pipe or the other Iterable are exhausted the interleaving stops:

>>> from pypey import pype
>>> list(pype(['a', 'fun', 'fun', 'day']).interleave([1, 2, 3]))
['a', 1, 'fun', 2, 'fun', 3]

Setting trunc to True will keep adding the left over items in the Iterable that hasn’t been exhausted
after the other one is:

>>> from pypey import pype
>>> list(pype(['a', 'fun', 'fun', 'day']).interleave([1, 2, 3], trunc=False))
['a', 1, 'fun', 2, 'fun', 3, 'day']

The number of items in this pipe’s to leave between the items in the Iterable can be varied:

>>> from pypey import pype
>>> list(pype(['a', 'fun', 'fun', 'day']).interleave([1, 2, 3], n=2))
['a', 'fun', 1, 'fun', 'day', 2]

This operation is lazy.

A cross between more_itertools.interleave_longest, more_itertools.interleave and
more_itertools.intersperse.

Parameters

• other – the Iterable whose items will be interleaved with this pipe’s

• n – the number of this pipe’s items to leave between each of the Iterable-‘s ones

• trunc – True if the unexhausted Iterable should be truncated once the other one is

Returns A pipe with this pipe’s elements and the given Iterable-‘s in order

Raises TypeError if other is not an Iterable or n` is not an ``int

Raises ValueError if n is less than one

it()→ Iterator[pypey.func.T]
Returns an Iterator for this pipe’s items. It’s a more concise version of, and functionally identical to,
Pype.__iter__()

>>> from pypey import pype
>>> list(iter(pype([1, 2, 3]))) == list(pype([1, 2, 3]).it())
True

Returns an Iterator for this pipe’s items

map(fn: Callable[[...], pypey.func.Y], *other_fns: Callable[[...], pypey.func.X], workers: int = 0, chunk_size:
int = 100)→ pypey.pype.Pype[Union[pypey.func.X, pypey.func.Y]]
Transforms this pipe’s items according to the given function(s):

>>> from math import sqrt
>>> from pypey import pype
>>> list(pype([1, 2, 3]).map(sqrt))
[1.0, 1.4142135623730951, 1.7320508075688772]

4.1. API Reference 21

pypey, Release 3.0.2

If more than one function is provided, they will be chained into a single one before being applied to each
item:

>>> from pypey import pype
>>> list(pype(['a', 'fun', 'day']).map(str.upper, reversed, list))
[['A'], ['N', 'U', 'F'], ['Y', 'A', 'D']]

If workers is greater than 0 the mapping will be parallelised using multiprocessing if possible or
pathos if not. pathos multiprocessing implementation is slower and has different limitations than the
built-in multiprocessing but it does allow using lambdas. When using workers, the backing Iterable is
teed to avoid consumption. Using a large chunk_size can greately speed up parallelisation; it is ignored
if workers is 0.

Similar to built-in map.

Parameters

• fn – a function taking a possibly unpacked item and returning a value

• other_fns – other functions to be chained with fn, taking a possibly unpacked item and
returning a value

• workers – number of extra processes to parallelise this method’s mapping function(s)

• chunk_size – size of subsequence of Iterable to be processed by workers

Returns a pipe with this pipe’s items mapped to values

Raises TypeError if fn is not a Callable or other_fns is not a tuple of Callable or if
workers or chunk_size are not int

Raises ValueError if workers is negative or chunk_size is non-positive

partition(pred: Callable[[...], bool])→ Tuple[pypey.pype.Pype[pypey.func.T],
pypey.pype.Pype[pypey.func.T]]

Splits this pipe’s items into two pipes, according to whether the given predicate returns True or False:

>>> from pypey import pype
>>> [list(p) for p in pype([1, 2, 3, 4]).partition(lambda n: n%2)]
[[2, 4], [1, 3]]

This method tees the backing Iterable.

Parameters pred – A function taking a possibly unpacked item and returning a boolean

Returns a 2-tuple with the first item being a pipe with items for which pred is False and the
second a pipe with items for which it is True

Raises TypeError if pred is not a Callable

pick(key: Any)→ pypey.pype.Pype[Any]
Maps each item to the given key. Allowed keys are any supported by object.__item__ :

>>> from pypey import pype
>>> list(pype(['a', 'fun', 'day']).pick(0))
['a', 'f', 'd']

as well as @property-defined object properties and namedtuple attributes:

22 Chapter 4. Contents

pypey, Release 3.0.2

>>> from collections import namedtuple
>>> from pypey import pype
>>> Person = namedtuple('Person', ['age'])
>>> list(pype([Person(42), Person(24)]).pick(Person.age))
[42, 24]

Equivalent to Pype.map(lambda item: item.key)() and Pype.map(lambda item:
item[key])().

Parameters key – key to pick from each item

Returns a pipe where each item in this pipe has been replaced with the given key

print(fn: typing.Callable[[...], str] = <class 'str'>, *, sep: str = ' ', end: str = '\n', file: typing.IO =
<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>, flush: bool = False, now: bool
= True)→ pypey.pype.Pype[pypey.func.T]

Prints string returned by given function using built-in print:

>>> from pypey import pype
>>> p = pype(iter([1, 2, 3])).print()
>>> list(p)
1
2
3
[1, 2, 3]

If now is set to True, the printing takes place immediately and the backing Iterable is consumed:

>>> from pypey import pype
>>> p = pype(iter([1, 2, 3])).print(now=True)
1
2
3
>>> list(p)
[]

The keyword-only parameters are the same as the built-in print (minus the now flag).

Parameters

• fn – A function taking a possibly unpacked item and returning a string

• sep – separator as per built-in print

• end – terminator, as per built-in print

• file – text stream, as per built-in print

• flush – flush, as per built-in print

• now – False if the printing should be deferred, True otherwise

Returns this pipe, with a possibly consumed backing Iterable if now is set to True

Raises TypeError if fn is not a Callable

reduce(fn: Callable[[pypey.func.H, pypey.func.T], pypey.func.H], init: Optional[pypey.func.X] = None)→
pypey.func.H

Reduces this pipe to a single value through the application of the given aggregating function to each item:

4.1. API Reference 23

pypey, Release 3.0.2

>>> from operator import add
>>> from pypey import pype
>>> pype([1, 2, 3]).reduce(add)
6

If init is not None, it will be placed as the start of the returned pipe and serve as a default value in case
the pipe is empty:

>>> from pypey import pype
>>> pype([1, 2, 3]).reduce(add, init=-1)
5

This function is eager and immediate.

Similar to functools.reduce.

Parameters

• fn – a function taking an aggregate of the previous items as its first argument and the
current item as its second, and returning a new aggregate

• init – a value to be placed before all other items if it’s not None

Returns a value of the same type as the return of the given function, or init if the pipe is empty

Raises TypeError if fn is not a Callable

Raises ValueError if this pipe is empty and init is None

reject(pred: Callable[[...], bool])→ pypey.pype.Pype[pypey.func.T]
Returns a pipe with only the items for each the given predicate returns False:

>>> from pypey import pype
>>> list(pype(['a', 'FUN', 'day']).reject(str.isupper))
['a', 'day']

Opposite of Pype.select().

Similar to built-in filterfalse.

Parameters pred – a function taking a possibly unpacked item and returning a boolean

Returns a pipe with the subset of this pipe’s items for which pred returns False

Raises TypeError if pred is not a Callable

reverse()→ pypey.pype.Pype[pypey.func.T]
Returns a pipe where this pipe’s items appear in reversed order:

>>> from pypey import pype
>>> list(pype([1, 2, 3]).reverse())
[3, 2, 1]

This operation is eager but deferred.

Similar to built-in reversed.

Returns a pipe with items in reversed order

roundrobin()→ pypey.pype.Pype[pypey.func.T]
Returns a pipe where each item is taken from each of this pipe’s elements’ in turn:

24 Chapter 4. Contents

pypey, Release 3.0.2

>>> from pypey import pype
>>> list(pype(['a', 'fun', 'day']).roundrobin())
['a', 'f', 'd', 'u', 'a', 'n', 'y']

This operation is eager but deferred.

Similar to more_itertools.interleave_longest.

Returns A pipe with items taken from this pipe’s Iterable items

Raises TypeError if any of this pipe’s items is not an Iterable

sample(k: int, seed_: Optional[Any] = None)→ pypey.pype.Pype[pypey.func.T]
Returns a pipe with k items sampled without replacement from this pipe:

>>> from pypey import pype
>>> list(pype([1, 2, 3, 4, 5]).sample(2))
[1, 3]

This operation is eager but deferred.

Similar to random.sample.

Parameters

• k – a non negative int specifying how many items to sample

• seed – an value to seed the random number generator

Returns a pipe with sampled items from this pipe

Raises TypeError if k is not an int

Raises ValueError if k is negative

select(pred: Callable[[...], bool])→ pypey.pype.Pype[pypey.func.T]
Returns a pipe with only the items for each pred returns True, opposite of Pype.reject():

>>> from pypey import pype
>>> list(pype(['a', 'FUN', 'day']).select(str.isupper))
['FUN']

Also known as filter.

Similar to built-in filter.

Parameters pred – a function taking a possibly unpacked item and returning a boolean

Returns a pipe with the subset of this pipe’s items for which the given pred returns True

Raises TypeError if pred is not a Callable

shuffle(seed_: Optional[Any] = None)→ pypey.pype.Pype[pypey.func.T]
Returns a shuffled version of this pipe:

>>> from pypey import pype
>>> list(pype([1, 2, 3, 4, 5]).shuffle())
[3, 2, 1, 5, 4]

This method is eager but deferred.

Similar to random.shuffle

4.1. API Reference 25

pypey, Release 3.0.2

Parameters seed – a value to seed the random generator

Returns This pipe, but with its items shuffled

size()→ int
Returns number of items in this pipe:

>>> from pypey import pype
>>> pype([1, 2, 3]).size()
3

This operation is eager and immediate.

Returns an int correpsonding to the cardinality of this pipe

slice(start: int, end: int)→ pypey.pype.Pype[pypey.func.T]
Returns a slice of this pipe between items at positions start and end, exclusive:

>>> from pypey import pype
>>> list(pype([1, 2, 3, 4]).slice(1, 3))
[2, 3]

Similar to itertools.islice.

Parameters

• start – index of first element to be returned

• end – index of element after the last element to be returned

Returns pipe with a slice of the items of this pipe

Raises TypeError if start or end are not int-s

Raises ValueError if start or end are negative or if end is smaller than start

sort(key: Optional[Callable[[...], pypey.func.Y]] = None, *, rev: bool = False)→
pypey.pype.Pype[pypey.func.T]

Sorts this pipe’s items, using the return value of key if not None:

>>> from pypey import pype
>>> list(pype(['a', 'funny', 'day']).sort(len))
['a', 'day', 'funny']

This method is eager but deferred.

Similar to builtin sorted.

Parameters

• key – a function possibly taking a unpacked item and returning a value to sort by, or None

• rev – True if the sort order should be reversed, False otherwise.

Returns a sorted pipe

Raises TypeError if key is not a Callable

split(when: Callable[[...], bool], mode: str = 'after')→ pypey.pype.Pype[pypey.pype.Pype[pypey.func.T]]
Returns a pipe containing sub-pipes split off this pipe where the given when predicate is True:

26 Chapter 4. Contents

pypey, Release 3.0.2

>>> from pypey import pype
>>> [list(split) for split in pype(list('afunday')).split(lambda char: char ==
→˓'a')
[['a'], ['f', 'u', 'n', 'd', 'a'], ['y']]

The default mode is to split after every item for which the predicate is True. When mode is set to before,
the split is done before:

>>> from pypey import pype
>>> [list(split) for split in pype(list('afunday')).split(lambda char: char ==
→˓'a', 'before')]
[['a', 'f', 'u', 'n', 'd'], ['a', 'y']]

And when mode is set to at, the pipe will be split both before and after, leaving the splitting item out:

>>> from pypey import pype
>>> [list(split) for split in pype(list('afunday')).split(lambda char: char ==
→˓'a', 'at')]
[[], ['f', 'u', 'n', 'd'], ['y']]

Similar to more_itertools.split_before, more_itertools.split_after and more_itertools.
split_at.

Parameters

• when – A function possibly taking a unpacked item and returning True if this pipe should
be split before this item

• mode – which side of the splitting item the pipe is split, one of after, at or before

Returns a pipe of pipes split off this pipe at items where when returns True

Raises TypeError if when is not a Callable or mode` is not a ``str

Raises ValueError if mode is a str but not one the supported ones

take(n: int)→ pypey.pype.Pype[pypey.func.T]
Returns a pipe containing the first or last n items of this pipe, depending on the sign of n:

>>> from pypey import pype
>>> list(pype([1, 2, 3, 4]).take(-2))
[3, 4]

>>> from pypey import pype
>>>list(pype([1, 2, 3, 4]).take(2))
[1, 2]

This operation is eager but deferred when n is negative else it’s lazy.

Also know as head and tail.

Parameters n – a negative int specifying the number of items of this pipe’s tail or a positive
int for the first n elements

Returns a pipe with this pipe’s first or last n items

Raises TypeError if n is not an int

take_while(pred: Callable[[...], bool])→ pypey.pype.Pype[pypey.func.T]
Returns a pipe containing this pipe’s items until pred returns False :

4.1. API Reference 27

pypey, Release 3.0.2

>>> from pypey import pype
>>> list(pype([1, 2, 3, 4]).take_while(lambda n: n < 4))
[1, 2, 3]

Similar to itertools.takewhile.

Parameters pred – a function taking a possibly unpacked item and returning a boolean

Returns a pipe that is a subset of this one minus the items after pred returns True

Raises TypeError if pred is not a Callable

tee(n: int)→ pypey.pype.Pype[pypey.pype.Pype[pypey.func.T]]
Returns n lazy copies of this pipe:

>>> from pypey import pype
>>> [list(copy) for copy in pype([1, 2, 3]).tee(2)]
[[1, 2, 3], [1, 2, 3]]

This method tees the backing Iterable but does not replace it (unlike Pype.clone()).

Similar to itertools.tee.

Returns a pipe containing n copies of this pipe

Raises TypeError if n is not an int

Raises ValueError if n is non-positive

to(fn: Callable[[Iterable[pypey.func.T]], pypey.func.Y], *other_fns: Callable[[...], pypey.func.X])→
Union[pypey.func.Y, pypey.func.X]

Applies given function to this pipe:

>>> from pypey import pype
>>> pype(['a', 'fun', 'day']).to(list)
['a', 'fun', 'day']

This method is eager if the given function is eager and lazy if it’s lazy:

>>> from pypey import pype
>>> p = pype(['a', 'fun', 'day']).to(enumerate)
>>> p
<enumerate object at 0x7fdb743003c0>
>>> list(p)
[(0, 'a'), (1, 'fun'), (2, 'day')]

If provided with more than one function, it will pipe them together:

>>> from pypey import pype
>>> pype(['a', 'fun', 'day']).to(list, len)
3

Equivalent to fn_n(...fn2(fn1(pipe))).

Parameters

• fn – function to apply to this pipe

• other_fns – other functions to be chained with fn

Returns the return value of the given function(s)

28 Chapter 4. Contents

pypey, Release 3.0.2

Raises TypeError if any of the provided functions is not a Callable

to_file(target: Union[AnyStr, os.PathLike, int], *, mode: str = 'w', buffering: int = - 1, encoding:
Optional[str] = 'utf8', errors: Optional[str] = None, newline: Optional[str] = None, closefd: bool =
True, opener: Optional[Callable[[...], int]] = None, eol: bool = True, now: bool = True)→
pypey.pype.Pype[pypey.func.T]

Writes items to file:

>>> from tempfile import gettempdir
>>> from os.path import join
>>> from pypey import pype
>>> p = pype(['a', 'fun', 'day']).to_file(join(gettempdir(), 'afunday.txt'),␣
→˓eol=False)
>>>list(p)
['a', 'fun', 'day']
>>> list(pype.file(join(gettempdir(), 'afunday.txt')))
['afunday']

The first eight parameters are identical to built-in open. If eol is set to True, each item will be converted
to string and a line terminator will be appended to it:

>>> from pypey import pype
>>> p = pype([1, 2, 3]).to_file(join(gettempdir(), '123.txt', eol=True))
>>> list(p)
[1, 2, 3]
>>> list(pype.file(join(gettempdir(), '123.txt')))
['1', '2', '3']

This method is intrinsically lazy but it’s set to immediate/eager by default. As such, if now is set to True
and the backing Iterable is lazy, it will be consumed and this method will return an empty pipe:

>>> from pypey import pype
>>> p = pype(iter([1, 2, 3])).to_file(join(gettempdir(), '123.txt'), now=True)
>>> list(p)
[]
>>> list(pype.file(join(gettempdir(), '123.txt')))
['1', '2', '3']

Parameters

• target – target to write this pipe’s items to

• mode – mode as per built-in open, except no read modes are allowed

• buffering – buffering as per built-in open

• encoding – encoding as per built-in open except the default value is utf8 instead of None

• errors – errors as per built-in open

• newline – newline as per built-in open

• closefd – closefd as per built-in open

• opener – opener as per built-in open

• eol – True if a line separator should be added to each item, False otherwise

• now – False to defer writing until pipe is iterated through, True to write immediately

4.1. API Reference 29

pypey, Release 3.0.2

Returns this pipe, possibly after writing its items to file

Raises ValueError if mode has r or +

to_json(target: Union[AnyStr, os.PathLike, int], *, mode: str = 'w', skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, default=None,
sort_keys=False, as_dict: bool = True)

Writes items to a file as a json value:

>>> from tempfile import gettempdir
>>> from os.path import join
>>> from pypey import pype
>>> p = pype(['a', 'fun', 'day']).to_json(join(gettempdir(), 'afunday.json'))
<pypey.pype.Pype object at 0x7f7c1971a8d0>
>>> list(pype.json(join(gettempdir(), 'afunday.json')))
['a', 'fun', 'day']

The first parameter is the same to built-in open, and the rest are identical to the ones in json.dump excep
the last one which specifies if pairs should be written as dict or as a list. This method will never write single
primitives if the pipe contains a single value.

This method is eager and immediate

Parameters

• target – target to write this pipe’s items to

• mode – mode as per built-in open, except no read modes are allowed

• skipkeys – skipkeys as per built-in json.dump

• ensure_ascii – ensure_ascii as per built-in json.dump

• check_circular – check_circular as per built-in json.dump

• allow_nan – allow_nan as per built-in json.dump

• cls – cls as per built-in json.dump

• indent – indent as per built-in json.dump

• separators – separators as per built-in json.dump

• default – default as per built-in json.dump

• sort_keys – sort_keys as per built-in json.dump

• as_dict – True if item pairs should be written as key-value pairs in an object, False if as
a list

Returns this pipe, after writing its items to a file as a json value

Raises ValueError if mode has r or +

Raises TypeError if as_dict is True and items are not pairs

top(n: int, key: typing.Callable[[pypey.func.T], typing.Any] = <function ident>)→
pypey.pype.Pype[pypey.func.T]
Returns a pipe with the n items having the highest value, as defined by the key function.

>>> from pypey import pype
>>> list(pype(['a', 'fun', 'day']).top(2, len))
['fun', 'day']

30 Chapter 4. Contents

pypey, Release 3.0.2

This method is eager but deferred.

Parameters

• n – the number of items to return

• key – the function defining the value to find the top elements for

Returns a pipe with the top n elements

Raises TypeError` if ``n is not an int or key is not a Callable

Raises ValueError if n is non-positive

uniq()→ pypey.pype.Pype[pypey.func.T]
Returns unique number of items:

>>> from pypey import pype
>>> list(pype(['a', 'b', 'b', 'a']).uniq())
['a', 'b']

This method tees the backing Iterable.

Similar to more_itertools.unique_everseen.

Returns A pipe with the unique items in this pipe

unzip()→ pypey.pype.Pype[pypey.pype.Pype[Any]]
Returns a pipe of pipes each with the items of this pipe’s Iterable items:

>>> from pypey import pype
>>> [list(p) for p in pype(['any', 'fun', 'day']).unzip()]
[['a', 'f', 'd'], ['n', 'u', 'a'], ['y', 'n', 'y']]

This method is eager but deferred.

Similar to more_itertools.unzip

Returns a pipe of pipes with the unzipped items in this pipe’s Iterable items

Raises TyperError if any of this pipe’s items is not an Iterable

window(size: int, *, shift: int = 1, pad: Optional[Any] = None)→
pypey.pype.Pype[Tuple[Optional[pypey.func.T], ...]]

Returns a pipe containing pipes, each being a sliding window over this pipe’s items:

>>> from pypey import pype
>>> list(pype(iter([1, 2, 3])).window(size=2))
[(1, 2), (2, 3)]

If size is larger than this pipe, pad is used fill in the missing values:

>>> from pypey import pype
>>> list(pype(iter([1, 2, 3])).window(size=4, pad=-1))
[(1, 2, 3, -1)]

Similar to more_itertools.windowed.

Parameters

• size – the size of the window

• shift – the shift between successive windows

4.1. API Reference 31

pypey, Release 3.0.2

• pad – the value to use to fill missing values

Returns a pipe of pipes, each being a sliding window over this pipe

Raises TypeError if either `size or shift is not an int

Raises ValueError if size is negative or shift is non-positive

zip(*others: Iterable[Any], trunc: bool = True, pad: Optional[Any] = None)→
pypey.pype.Pype[Tuple[pypey.func.T, ...]]
Zips items in this pipe with each other or with items in each of the given Iterable-s. If no Iterable-s
are provided, the items in this pipe will be zipped with each other:

>>> from pypey import pype
>>> list(pype(['a', 'fun', 'day']).zip(trunc=False, pad='?'))
[('a', 'f', 'd'), ('?', 'u', 'a'), ('?', 'n', 'y')]

Self-zipping will consume the backing Iterable if it’s lazy. If other Iterable-s are provided, the items
in this pipe will be zipped with the items in those:

>>> from pypey import pype
>>> list(pype(['a', 'fun', 'day']).zip([1, 2, 3, 4]))
[('a', 1), ('fun', 2), ('day', 3)]

Similar to built-in zip and itertools.zip_longest.

Parameters

• others – Iterables to be zipped with this with this pipe

• trunc – True to truncate all Iterable-s to the size of the shortest one, False to pad all
to the size of the longest one

• pad – value to pad shorter Iterable-s with if trunc is False; if it’s True it’s ignored

Returns a pipe with the zipped items of this pipe with each other or with the given Iterable-s’
ones

Raises TypeError any of others is not an Iterable

zip_with(fn: Callable[[...], pypey.func.Y])→ pypey.pype.Pype[Tuple[pypey.func.T, pypey.func.Y]]
Returns a pipe where each item is a 2-tuple with this pipe’s item as the first and the output of fn as the
second. This is useful for adding an extra piece of data to the current pipeline:

>>> from pypey import pype
>>> list(pype(['a','fun', 'day']).zip_with(len))
[('a', 1), ('fun', 3), ('day', 3)]

and it’s a more concise version of:

>>> from pypey import pype
>>> list(pype(['a','fun', 'day']).map(lambda w: (w, len(w))))
[('a', 1), ('fun', 3), ('day', 3)]

Parameters fn – a function taking a possibly unpacked item and returning a value to be zipped
with this pipe’s item

Returns a new pipe with zipped items

32 Chapter 4. Contents

pypey, Release 3.0.2

TOTAL = _TOTAL_
Constant indicating the aggregated counts in Pype.freqs()

class Total
Bases: str

4.1.3 func

Functions and constants for a concise use of higher-level functions

ident(item: pypey.func.T)→ pypey.func.T
Identity function, returns the argument passed to it.

Parameters item – any argument

Returns the argument passed in

pipe(*functions: Callable)→ Callable
Chains given functions.

>>> from pypey import pipe
>>> from math import sqrt
>>> [pipe(len, sqrt)(w) for w in ('a', 'fun','day')]
[1.0, 1.7320508075688772, 1.7320508075688772]

For functions taking multiple arguments, the return of the previous function in the chain will be unpacked only
if it’s a tuple:

>>> from pypey import pipe
>>> pipe(divmod, lambda quotient, remainder: quotient + remainder)(10, 3)
4

If a function returns an Iterable that it’s not a tuple but unpacking in the next function is still needed, built-in
tuple can be inserted in between to achieve the desired effect:

>>> from pypey import pipe
>>> pipe(range, tuple, lambda _1, _2_, _3: sum([_1, _3]))(3)
2

Conversely, if a function returns a tuple but unpacking is not required in the next function, built-in list can
be used to achieve the desired effect:

>>> from pypey import pipe
>>> pipe(divmod, list, sum)(10, 3)
4

Note that list is the only exception to the rule that tuple returns will be unpacked.

Parameters functions – a variable number of functions

Returns a combined function

px
Concise alias of functools.partial

require(cond: bool, message: str, exception: typing.Type[Exception] = <class 'TypeError'>)
Guard clause, useful for implementing exception-raising checks concisely, especially useful in lambdas.

4.1. API Reference 33

pypey, Release 3.0.2

>>> from pypey import require, pype
>>> pype([1,2,'3']).do(lambda n: require(isinstance(n, int), 'not an int'),␣
→˓now=True)
Traceback (most recent call last):
...

TypeError: not an int

Parameters

• cond – if False the given exception will be thrown, otherwise this function is a no-op

• message – exception message

• exception – exception to throw if cond is False, defaults to TypeError

Returns nothing

require_val(cond: bool, message: str)
Throws ValueError exception if cond is False, equivalent to require() with exception=ValueError.

>>> from pypey import require_val, pype
>>> pype([1,2,-3]).do(lambda n: require_val(n>0, 'not a positive number'), now=True)
Traceback (most recent call last):

...
ValueError: not a positive number

Parameters

• cond – if False the a ValueError will be thrown, otherwise this function is a no-op

• message – the exception message

Returns nothing

throw(exception: Type[Exception], message: str)
Throws given exception with given message, equivalent to built-in raise. This function is useful for raising
exceptions inside lambdas as raise is syntactically invalid in them.

>>> from pypey import throw, pype
>>> pype([1,2,3]).do(lambda n: throw(ValueError, 'test'), now=True)
Traceback (most recent call last):
...

ValueError: test

Parameters

• exception – the exception to throw

• message – the exception message

Returns nothing

Fn
Callable type; Callable[[int], str] is a function of (int) -> str.

The subscription syntax must always be used with exactly two values: the argument list and the return type. The
argument list must be a list of types or ellipsis; the return type must be a single type.

34 Chapter 4. Contents

pypey, Release 3.0.2

There is no syntax to indicate optional or keyword arguments, such function types are rarely used as callback
types.

alias of Callable

4.1.4 dycts

Factory methods matching those of Pype and dict

countdyct
CountDyct factory

defdyct
DefDyct factory

dyct
Dyct factory

4.1.5 dyct

Pipeable versions of dict, collections.defaultdict and collections.Counter

class CountDyct(counts: Iterable[pypey.dyct.K] = ())
Bases: Generic[pypey.dyct.K], collections.Counter

A pipeable version of collections.Counter containing a superset of its methods

inc(item: pypey.dyct.K, count: int = 1)→ pypey.dyct.CountDyct[pypey.dyct.K]
Increments counts of item by count.

Parameters

• item – item to be incremented

• count – increment

Returns this CountDyct

pype()→ pypey.pype.Pype[Tuple[pypey.dyct.K, int]]
Return this CountDyct-‘s items as a Pype

Returns Pype containing pairs of key, count

class DefDyct(default_factory: Optional[Callable[[...], pypey.func.Y]], fn: Optional[Callable[[pypey.dyct.V,
pypey.dyct.V], pypey.func.Y]] = None, *args, **kwargs)

Bases: Generic[pypey.dyct.K, pypey.dyct.V], collections.defaultdict

A pipeable version of collections.defaultdict containing a superset of its methods

add(key: pypey.dyct.K, value: pypey.dyct.V)→ pypey.dyct.DefDyct[pypey.dyct.K, pypey.dyct.V]
Updates value associated with given key with given value, using fn passed in in constructor If fn is None,
then inplace addition will be used.

Parameters

• key – key to add

• value – value to add

Returns this DefDyct

pype()→ pypey.pype.Pype[Tuple[pypey.dyct.K, pypey.dyct.V]]
Return this DefDyct-‘s items as a Pype

4.1. API Reference 35

pypey, Release 3.0.2

Returns Pype containing pairs of key, values

class Dyct(*args, **kwargs)
Bases: Generic[pypey.dyct.K, pypey.dyct.V], collections.UserDict

A pipeable version of dict containing a superset of its methods

pype()→ pypey.pype.Pype[Tuple[pypey.dyct.K, pypey.dyct.V]]
Return this Dyct-‘s items as a Pype

Returns Pype containing pairs of key, values

reverse(overwrite: bool = True)→ pypey.dyct.Dyct[pypey.dyct.V, Union[pypey.dyct.K, Set[pypey.dyct.K]]]
Reverses keys and values in this Dyct. To prevent keys mapping to equal values from being lost, set
overwrite to False and they will be kept in a Set.

Parameters overwrite – True if keys should be overwritten False if they should be preserved
in a Set.

Returns a new Dyct with keys for values and values for keys

set(key: pypey.dyct.K, value: pypey.dyct.V)→ pypey.dyct.Dyct[pypey.dyct.K, pypey.dyct.V]
sets given key to given value

Parameters

• key – key to add/overwrite

• value – value to (re-)set

Returns this Dyct

4.2 License

pypey is under the MIT License. See the LICENSE file.

See also:

The MIT License

Copyright (c) 2021 Jose Llarena

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

36 Chapter 4. Contents

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

37

pypey, Release 3.0.2

38 Chapter 5. Indices and tables

PYTHON MODULE INDEX

p
pypey.dyct, 35
pypey.dycts, 35
pypey.func, 33
pypey.pype, 14
pypey.pypes, 12

39

pypey, Release 3.0.2

40 Python Module Index

INDEX

A
accum() (Pype method), 14
add() (DefDyct method), 35

B
broadcast() (Pype method), 14

C
cat() (Pype method), 15
chunk() (Pype method), 15
clone() (Pype method), 16
CountDyct (class in pypey.dyct), 35
countdyct (in module pypey.dycts), 35
cycle() (Pype method), 16

D
DefDyct (class in pypey.dyct), 35
defdyct (in module pypey.dycts), 35
dict() (Pyper static method), 12
dist() (Pype method), 16
divide() (Pype method), 17
do() (Pype method), 17
drop() (Pype method), 18
drop_while() (Pype method), 19
Dyct (class in pypey.dyct), 36
dyct (in module pypey.dycts), 35

E
eager() (Pype method), 19
enum() (Pype method), 19

F
file() (Pyper static method), 13
flat() (Pype method), 20
flatmap() (Pype method), 20
Fn (in module pypey.func), 34
freqs() (Pype method), 20

G
group_by() (Pype method), 20

I
ident() (in module pypey.func), 33
inc() (CountDyct method), 35
interleave() (Pype method), 20
it() (Pype method), 21

J
json() (Pyper static method), 13

M
map() (Pype method), 21
module

pypey.dyct, 35
pypey.dycts, 35
pypey.func, 33
pypey.pype, 14
pypey.pypes, 12

P
partition() (Pype method), 22
pick() (Pype method), 22
pipe() (in module pypey.func), 33
print() (Pype method), 23
px (in module pypey.func), 33
Pype (class in pypey.pype), 14
pype (in module pypey.pypes), 14
pype() (CountDyct method), 35
pype() (DefDyct method), 35
pype() (Dyct method), 36
Pyper (class in pypey.pypes), 12
pypey.dyct

module, 35
pypey.dycts

module, 35
pypey.func

module, 33
pypey.pype

module, 14
pypey.pypes

module, 12

41

pypey, Release 3.0.2

R
reduce() (Pype method), 23
reject() (Pype method), 24
require() (in module pypey.func), 33
require_val() (in module pypey.func), 34
reverse() (Dyct method), 36
reverse() (Pype method), 24
roundrobin() (Pype method), 24

S
sample() (Pype method), 25
select() (Pype method), 25
set() (Dyct method), 36
shuffle() (Pype method), 25
size() (Pype method), 26
slice() (Pype method), 26
sort() (Pype method), 26
split() (Pype method), 26

T
take() (Pype method), 27
take_while() (Pype method), 27
tee() (Pype method), 28
throw() (in module pypey.func), 34
to() (Pype method), 28
to_file() (Pype method), 29
to_json() (Pype method), 30
top() (Pype method), 30
Total (class in pypey.pype), 33
TOTAL (in module pypey.pype), 32

U
uniq() (Pype method), 31
unzip() (Pype method), 31

W
window() (Pype method), 31

Z
zip() (Pype method), 32
zip_with() (Pype method), 32

42 Index

	Motivation
	Lazy and Deferred Evaluation
	Argument Unpacking

	Getting Started
	Related Libraries
	Contents
	API Reference
	pypes
	pype
	func
	dycts
	dyct

	License

	Indices and tables
	Python Module Index
	Index

